Internal Magnetic Structure and Electric Fields in the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT–SI)

Aaron J. Redd
for the HIT Team

Aerospace & Energetics Research
University of Washington
Seattle, Washington USA

ICC 2007
Innovative Confinement Concepts Workshop
College Park, Maryland
February 12–14, 2007
HIT Personnel

Faculty and Staff
Thomas R. Jarboe George R. Andexler Luisa Pareja-Klemisch
Brian A. Nelson Andrew Cassidy Dennis Peterson
Roger Raman Matthew B. Fishburn John A. Rogers
Aaron J. Redd Susan Griffith Dzung Tran
Roger J. Smith
George J. Marklin (PSI-Center)

Graduate Students
Rabih Z. AboulHosn William T. Hamp Bret T. Stewart
Cihan Ackay R. “Griff” O’Neill Jonathan Wrobel

Undergraduates
Hok Chan Breana Merriweather Ling-Cheong Yu
Mark Chupinski James Newman
Talk Outline

• HIT–SI Background

• Spheromaks with $I_{\text{TOR}}=29$ kA, $I_{\text{TOR}}/I_{\text{INJ}}=1.5$

• Taylor-State Model Matches Field Evolution

• Internal E-Field Measurements
Helicity Conservation Makes Current Drive Simple

- Magnetic helicity is the best constant of motion in a magnetized plasma.

- Helicity-conserving magnetic activity dissipates free energy by producing a more uniform J/B profile:
 Driving J/B high in an experimentally convenient location produces current drive throughout the volume.

- If the fluctuation levels are limited to that required for current drive, then confinement in a high-conductivity reactor-scale plasma will not be overly degraded.
The HIT–SI Device

In each injector, flux and voltage are sinusoidal and in phase.

Total Helicity Injection Rate is

\[\dot{K} = 2V_{INJ}\psi_{INJ} \sin^2 \omega t + 2V_{INJ}\psi_{INJ} \cos^2 \omega t = 2V_{INJ}\psi_{INJ} \]
HIT–SI is the Application of SIHI to Form and Sustain a Spheromak

- The HIT–SI confinement region has a “bow-tie” shape for improved stability and high β.

- HIT–SI has two inductive helicity injectors, which allows constant rates of helicity and power injection.

- The AC fields, voltages, and currents in the two injectors form and sustain a DC magnetized plasma (a spheromak), with significant toroidal current and field.
HIT-SI Diagnostic Locations

- Mid-plane diagnostic ports
- "X" Injector
- "Y" Injector
- Surface Probe
- Axial Port
- Internal Probe Array
Spheromak Formation with Toroidal Current of 29 kA
High Current HIT–SI Shot #105914
Spheromak Formation with Toroidal Current of 29 kA
High Current HIT–SI Shot #105914

Peak I_{TOR}/I_{INJ} was 1.4; Axisymmetric B_p matches Taylor-state distribution

Aaron J. Redd

“Internal Magnetic Structure and Fields in HIT–SI”
HIT–SI Taylor-State Equilibrium Model

• Taylor-state basis functions are solutions to $\nabla \times \mathbf{B} = \lambda \mathbf{B}$

• HIT–SI Taylor-state equilibrium model uses three basis functions:
 * The lowest-energy (spheromak) eigenstate ($\lambda = 10.4 \, m^{-1}$)
 * Two injector-driven basis functions (undetermined λ)

Choose $\lambda = 10.4 \, m^{-1}$ for all three basis functions
\Rightarrow Superposition is Taylor-State equilibrium

• The two injector-driven basis function amplitudes are scaled by the measured current in each injector.
 One free parameter: the spheromak eigenfunction amplitude.
Axisymmetric B_p Scales Spheromak Eigenfunction

Comparison to experiment: HIT–SI discharge #105278.

Axisymmetric fields calculated from poloidal flux loops: Inboard loops at left, Outboard loops at right.

Black: experimental values
Red: scaled Taylor model

At each time step, the spheromak amplitude (a single parameter) provides the best fit to the axisymmetric fields.

\[
\text{discrepancy} \equiv \frac{1}{N} \sum_{N} \frac{|B_{\text{model}} - B_{\text{meas}}|}{|B_{\text{meas}}|}
\]

Eigenfunction by G. Marklin
Calculations by P. E. Sieck

Aaron J. Redd

“Internal Magnetic Structure and Fields in HIT–SI”
Model Matches Internal HIT–SI Fields

Comparison to experiment: HIT–SI discharge #105278.

Poloidal and Toroidal fields measured with internal array: Poloidal fields at left, Toroidal fields at right.

Bottom probe is deepest, at \(R = 0.36 \) m.
Top probe is near edge, at \(R = 0.52 \) m.

Black: experimental values
Red: scaled Taylor model

Slowly-varying spheromak amplitude also plotted, in red.

Basis functions by G. Marklin
Calculations by P. E. Sieck
Measurements by R. J. Smith
Model Matches Surface HIT–SI Fields

Comparison to experiment: HIT–SI discharge #105278.

Poloidal and Toroidal fields measured at inboard surface:
Poloidal fields at left, Toroidal fields at right.

Illustrates significant poloidal and toroidal variations in the surface fields.

Black: experimental values
Red: scaled Taylor model

Slowly-varying spheromak amplitude also plotted, in red.

Basis functions by G. Marklin
Calculations by Paul E. Sieck
Measured Fields in HIT–SI Discharge Database

Well-Fit by Taylor-State Model

- All HIT–SI discharges can be fitted by this Taylor-state model.
- The fit between measurements and the model improves with increasing toroidal plasma current I_{TOR}.

- Taylor-state model can also be used to trace field lines, for visualizing the equilibrium geometry.
Taylor-State Equilibrium Field Lines
Viewing one-half of HIT–SI, along symmetry axis

Injector-only fields

Injector and spheromak
$I_{\text{TOR}} / I_{\text{INJ}} \approx 1.5$

Injector and spheromak
$I_{\text{TOR}} / I_{\text{INJ}} \approx 5.0$

Separatrix formation occurs if $I_{\text{TOR}} / I_{\text{INJ}} \geq 1.0$

See also Jarboe et al., PRL 97, 115003 (2006).

Aaron J. Redd

“Internal Magnetic Structure and Fields in HIT–SI”
Internal E-Field Measurements Reveal the Voltage Dissipated in the Injectors

- Arrays of voltage probes are installed at the mouths of one HIT–SI helicity injector (the X-injector).
- These probes provide a direct measurement of the voltage drop within the confinement region.
- This measured voltage drop can then be compared to the total inductive loop voltage in the injector.
Injector Probe Located at Injector Mouth
HIT–SI Discharge #106136, Helium gas, Axial Window View
Spheromak Driving Voltage
Increases Linearly with Injector Loop Voltage

Measurements by Rabih Z. AboulHosn

Aaron J. Redd

“Internal Magnetic Structure and Fields in HIT–SI”
Conclusions

- HIT–SI demonstrates that SIHI can form and sustain spheromaks with $I_{\text{TOR}} \leq 29 \text{kA}$, using less than 6 MW of injected power.

- The spatial structure and temporal evolution of the fields in HIT–SI are well-described by a Taylor-state equilibrium model. Taylor-state model predicts separatrix formation at $I_{\text{TOR}} \approx I_{\text{INJ}}$. Experimentally, HIT–SI has demonstrated $I_{\text{TOR}} = 1.5 \times I_{\text{INJ}}$.

- Internal electric field measurements show that the injector voltages extend into the confinement region, and can thus drive the spheromak.